The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules.

نویسندگان

  • L J Martínez-Guerrero
  • K K Evans
  • W H Dantzler
  • S H Wright
چکیده

Secretion of organic cations (OCs) across renal proximal tubules (RPTs) involves basolateral OC transporter (OCT)2-mediated uptake from the blood followed by apical multidrug and toxin extruder (MATE)1/2-mediated efflux into the tubule filtrate. Whereas OCT2 supports electrogenic OC uniport, MATE is an OC/H(+) exchanger. As assessed by epifluorescence microscopy, cultured Chinese hamster ovary (CHO) cells that stably expressed human MATE1 accumulated the fluorescent OC N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA) in the cytoplasm and in a smaller, punctate compartment; accumulation in human OCT2-expressing cells was largely restricted to the cytoplasm. A second intracellular compartment was also evident in the multicompartmental kinetics of efflux of the prototypic OC [(3)H]1-methyl-4-phenylpyridinium (MPP) from MATE1-expressing CHO cells. Punctate accumulation of NBD-MTMA was markedly reduced by coexposure of MATE1-expressing cells with 5 μM bafilomycin (BAF), an inhibitor of V-type H(+)-ATPase, and accumulation of [(3)H]MPP and [(3)H]NBD-MTMA was reduced by >30% by coexposure with 5 μM BAF. BAF had no effect on the initial rate of MATE1-mediated uptake of NBD-MTMA, suggesting that the influence of BAF was a secondary effect involving inhibition of V-type H(+)-ATPase. The accumulation of [(3)H]MPP by isolated single nonperfused rabbit RPTs was also reduced >30% by coexposure to 5 μM BAF, suggesting that the native expression in RPTs of MATE protein within endosomes can increase steady-state OC accumulation. However, the rate of [(3)H]MPP secretion by isolated single perfused rabbit RPTs was not affected by 5 μM BAF, suggesting that vesicles loaded with OCs(+) are not likely to recycle into the apical plasma membrane at a rate sufficient to provide a parallel pathway for OC secretion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A human transporter protein that mediates the final excretion step for toxic organic cations.

In mammals, toxic electrolytes of endogenous and exogenous origin are excreted through the urine and bile. Before excretion, these compounds cross numerous cellular membranes in a transporter-mediated manner. However, the protein transporters involved in the final excretion step are poorly understood. Here, we show that MATE1, a human and mouse orthologue of the multidrug and toxin extrusion fa...

متن کامل

Renal tubular secretion of varenicline by multidrug and toxin extrusion (MATE) transporters.

Multidrug and toxin extrusion (MATE) 1 and MATE2-K, H(+)/organic cation antiporters, are located at the brush-border membrane of renal proximal tubules. The present study aimed to clarify the role of MATE transporters in tubular secretion of varenicline. Varenicline at a dose of 5 mg/kg was administered to wild-type and Mate1-knockout mice via the jugular vein, and its uptake was measured by hi...

متن کامل

Molecular mechanism of renal tubular secretion of the antimalarial drug chloroquine.

The antimalarial drug chloroquine is eliminated to a significant extent by renal tubular secretion. The molecular mechanism of renal chloroquine secretion remains unknown. We hypothesized that organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1), localized in the basolateral and luminal membranes of proximal tubule cells, respectively, are involved in chloroqu...

متن کامل

Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubula...

متن کامل

Dmd062364 984..993

The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 310 1  شماره 

صفحات  -

تاریخ انتشار 2016